
TECHNICAL DOCUMENT 3304
April 2016

Establishing Qualitative Software
Metrics in Department of the

Navy Programs

Christopher E. Johnson

Approved for public release.

SSC Pacific
San Diego, CA 92152-5001

SB

SSC Pacific
San Diego, California 92152-5001

K. J. Rothenhaus, CAPT, USN
Commanding Officer

C. A. Keeney
Executive Director

ADMINISTRATIVE INFORMATION
The work described in this report was performed during Fiscal Year 2015 by the Command

Intelligence Systems Division (Code 53200), Space and Naval Warfare Systems Center Pacific
(SSC Pacific), San Diego, CA. The Naval Innovative Science and Engineering (NISE) Program at
SSC Pacific provided funding for this Applied Research project.

This is a work of the United States Government and therefore is not copyrighted. This work may
be copied and disseminated without restriction.

The citation of trade names and names of manufacturers in this report is not to be construed as
official government endorsement or approval of commercial products or services referenced in
this report.

ActionScript® is a registered trademark of Adobe Systems Incorporated.
Advanced Business Application Planning (ABAP) is a registered trademark of TechTarget®

ColdFire® is a registered trademark of NXP Semiconductors.
Eclipse™ is an open source software solution of Eclipse Foundation.
Find Bugs™ is a registered trademark of The University of Maryland.
Fortify™ is a registered trademark of Hewlett Packard Company.
Hewlett-Packard® and HP® are registered trademark of Hewlett-Packard, Inc.
Intel® is a registered trademark of the Intel Corporation.
IntelliJ and IntelliJ IDEA are trademarks or registered trademarks of JetBrains, Inc.
Java® is a registered trademark of Oracle Corporation.
JavaScript™ is a trademark of Oracle Corporation.
JMeter™ is a trademark of the Apache Software Foundation.
LEGO is a registered trademark of the LEGO Group.
MATLAB® is a registered trademark of The MathWorks®

NetBeans™ is a trademark of Oracle Corporation.
PL/SQL is a registered trademark of Oracle Corporation
PMD is a registered trademark of pMDSoft, Inc.
Python™ is a trademark of Python Software Foundation
Understand™ is a trademark of Scientific Toolworks. Inc.
SonarQube™ is a trademark of SonarSource SA.
Visual Basic.NET® (VB.NET®) is a registered trademark of The Microsoft Corporation.
VTune™ is a trademark of Intel® Software.

Released under authority of J.
J. M. Simonetti, Head
Command Intelligence
Systems Division

iii

CONTENTS
PURPOSE .. 1
SOFTWARE QUALITY CHARACTERISTICS .. 1
SOFTWARE QUALITY MEASURMENT... 1

REUSABILITY .. 2
PORTABILITY .. 3

Related Metrics .. 4
Maintainability .. 6
Security .. 8

EXTENSIBILITY ... 9
Reliability .. 11
Testability ... 12
Scalability ... 13
Quality to Metrics Dependency Matrix ... 13

SOFTWARE METRICS DEFINITION .. 14
MODULARITY .. 14
DEPENDENCIES ... 15
CYCLOMATIC COMPLEXITY ... 15
ABSTRACTNESS .. 16
COUPLING .. 16
COHESION .. 16
AFFERENT COUPLING .. 16
EFFERENT COUPLING .. 16
DUPLICATE CODE.. 16
DEAD CODE .. 16
DEFECT DENSITY OR SOFTWARE ISSUE DENSITY ... 16
WEIGHTED METHODS PER CLASS (WMC) ... 17
NUMBER OF CHILDREN PER CLASS (NOC) ... 17

STATIC-CODE ANALYSIS TOOLS .. 17
ATOMIQ [10] .. 17
CHECKSTYLE [11] .. 17
COUNT LINES OF CODE (CLOC) [12] ... 18
CPPDEPEND [13] .. 18
FINDBUGS™ [14] ... 18
FIND SECURITY BUGS [15] ... 18
FORTIFY™ [16] .. 18
GMETRICS [17] ... 19
JARCHITECT [18] .. 19
MCCABE IQ [19] .. 19
NDEPEND [20] ... 19
PMD® [21]... 19
SONARQUBE™ [22] ... 20
UNIFIED CODE COUNT (UCC) [23] ... 20
UNDERSTAND™ [24] ... 20
TOOLS TO METRIC MATRIX ... 20

CONCLUSION ... 22
REFERNCES ... 23

iv

Figure
1. Testability % = (a/A)*100 ...12

Tables
1. Reusability score matrix ... 3
2. Portability score matrix ... 5
3. Maintainability score matrix .. 7
4. Security score matrix .. 9
5. Extensibility score matrix ...10
6. Reliability score matrix ..11
7. Quality characteristics to metrics dependecy matrix ..13
8. Tools to metrics matrix ..21

1

The Department of the Navy is dedicated to provide the highest quality software to its users. In
accomplishing this goal, a need exists for a formalized set of software quality metrics. This document
establishes the validity of those necessary quality metrics. In our approach, we collected the data of more
than a dozen programs from previous tests, analyzed current states of the software, derived formulas by
weighting to provide necessary results, investigated tool sets to provide the necessary variable data for
our formulas, and tested the formulas for validity.

PURPOSE

Space and Naval Warfare Systems Center Pacific (SSC Pacific) seeks to establish and
provide a set of software quality metrics, measured from common static code analysis tools,
which the Department of the Navy can use to measure quality. These metrics provide quality
and maturity data through all stages of software development to further ensure that the
software delivered meets government-specific requirements. Carefully chosen metrics can
direct attention to problems, providing diagnostic value and influence developers’ behavior,
and offset post-delivery maintenance costs.

SOFTWARE QUALITY CHARACTERISTICS
Software developers can use common static code analysis tools to obtain various measurable metrics of

various categories from every software component. This document identifies software qualities and their
indicators that affect DoD 5000.02 program areas, primarily cost, schedule, and risk. For software quality
measures, the following abilities associated with any software are considered:

• Reusability
• Portability
• Maintainability
• Security
• Extensibility
• Reliability
• Testability
• Scalability

SOFTWARE QUALITY MEASURMENT

Table 1 defines a matrix for determining a score for reusability. It is an example for the
other abilities measured in this document. The columns in the tables represent the software
attributes our research proved as the most relevant to determine quality for software we
acquire. The rows in the table define a range of values to score the software. The project team
selected these attributes based on various documents, studies, academic research, industry
findings, and empirical data of locally developed programs as listed in [1–24].

The test looked at over 40 software applications from more than a dozen different
developers, including government and contractor. Sizes of the applications varied in source
lines of code (SLOC), modules, complexity, dependencies, and program languages. We
reviewed 15 tools in our current laboratory to determine the best-fit tool for the measures and
attributes tested. All the applications selected were previously tested, and in many cases,
operationally fielded. From operational use, empirical data was available to support a
familiarity of the actual quality of the software prior to the test. This experience enabled us to

2

refine the formulas through a series of test, formula refinement, and retest, to adjust the
formulas and weighting and provide us the expected results.

After determining the tools, we tested software applications to generate the necessary
quality attribute data. The data provided from the tools enabled us to create the formulas and
weighting necessary to achieve overall qualitative measurement of software.

To achieve the overall score of a particular ability, we selected the combined measures
from the table. The corresponding Grade 1–5 was selected for each attribute. The grade
number for each attribute was then multiplied by the corresponding weighting in the formula.
The numbers for each attribute were then added to arrive at a final score. That score, using
the same overall grade as the individual attributes, was used to determine the overall quality.

REUSABILITY
Software abstractness drives reusability. Abstract software can be inherited, which allows

for increased reuse. In addition to abstract software, modularity improves software reuse
because smaller, more abstract components can be reused and put together like LEGO®
blocks to create new functionality.

The formula provides heavier weighting on abstractness (0.5) over the other contributing
variables in the formula. Modularity provides the next higher weighting N (0.3), which
accounts for the sizes of the modules and number of modules used for the application. For
this measure, smaller module sizes with more modules are preferred, and provide the
associated formula weighting. Complexity and architecture provide the final attribute
measures, and are weighted identical based on the ability once module sizes are reduced, best
engineering process would dictate decreasing the complexity of the modules and help in
achieving the modularity values desired.
Related Metrics:

• Modularity
o Number of module score
o Module size score

• Abstractness
o Weighted Methods per Class (WMC)
o Number of Children per Class (NOC)

• Complexity
o Cyclamate Complexity
o Coupling

• Open Architecture Assessment

o Use open architecture = 1 if not 0

3

Table 1. Reusability score matrix.

Grade

Modules Abstractness Complexity

Number of
Modules

Coupling
(%) Size WMC NOC

(%)
Cyclomatic
Complexity

1 Very good > 20 < 50 0–200 1–2 > 25 < 3

2 Good 15–20 51–60 201–300 3–5 20–25 3–6

3 Fair 11–15 61–75 301–400 6–9 10–20 7–10

4 Needs
improvement 5–10 76–90 401–500 10–14 5–10 11–14

5 Poor 1–5 > 90 > 500 > 14 < 5 15–20

Modularity Calculation:

 Mo = (Mn x .5) + (Ms x .5)
Abstractness Calculation:

 Ab = (W x .5) + (N x .5)
Complexity Calculation:

 Co = (V x .5) + (Cp x .5)
Reusability Calculation

 Re = Mo(.3) + Ab(.5) + Co(.1) + A(.1)
Re = Reusability
Mo = Modularity
Mn = Number of Modules
Ms = Module Size
Ab = Abstractness
Co = Complexity
V = Cyclomatic Complexity
Cp = Coupling
A = Architecture
W = Weighted Methods per Class
N = Number of Children

PORTABILITY

Software portability entails the ability and effort required to produce a runnable application
based on existing source code for a new environment. Software portability depends on the
language used, the libraries, the dependency on native system calls, and the assumptions
about the underlying hardware, including display, storage space, memory availability, and

4

permissions. Measuring portability is not a simple task. The portability metric is useful, but it
is critical to first review the software architecture to determine the availability of dependent
libraries as well as hardware assumptions. The key features for software portability are:

• Use of popular high-level language (not assembly language or platform-specific
language)

• Keeping platform-specific code in modules separate from the cross-platform code
and bbuilding application on a platform-abstraction layer

• Use of standardized and widely available APIs (e.g., OpenGL, X) and cross-
platform network APIs, protocols, and data representations (e.g., XML, JSON,
CORBA, ASN.1, Unicode); pay attention to byte-ordering, structure-packing, and
native character set issues

• Use of cross-platform libraries and Open Source libraries that have multiplatform
support

• Use of a cross-platform virtual machine or interpreter (e.g., Java™, Smalltalk,
Python, Perl).

Related Metrics

• Programming languages
o Software is not portable if it is written using platform-specific language or

language that is not supported on the targeted platform
o Java™, C, C++, Python™ = 2, other high-level language = 1

• Architecture assessment

o Interview the system architect or lead programmer and check off the
architecture features for score

• Modularity
o Number of modules
o Module size score

• Complexity
o Cyclomatic complexity
o Coupling

A careful examination of all hardware dependencies is an important first step, as hardware
dependencies present the biggest challenge in portability. Whether it is a smart card, a display
device, a storage device, or some specialized hardware, when the targeted platform does not
have hardware support, the project is not portable and the grade for the portability category is
Poor for all categories.

Portability Pass/Fail questions:

• Is there any critical hardware dependency where support does not exist on the targeted
platform?

• Is there platform-specific language in the software?

5

Table 2. Portability score matrix.

Grade
Programming
Languages

Open
Architechture

Score

Modules Complexity

Number
of

Modules

Coupling

(%)
Size Cyclomatic

Complexity

1 Very good
Java C, C++,

Python,
Pearl

= 1 > 20 < 50 0–200 < 3

2 Good 1–2 15–20 51–60 201–
300 3–6

3 Fair Other high-
level language 2–3 11–15 61–75 301–

400 7–10

4 Needs
improvement 3–4 5–10 76–90 401–

500 11–14

5 Poor
Platform-
specific

language
4–5 1–5 > 90 > 500 15–20

After passing the portability questions, the developer can determine the architecture score
for portability by reviewing the software architecture or interviewing the system designer.
The following questions should be answered:

• Does the project use a cross-platform virtual machine or primarily use interpreted
language (e.g., Java™, Smalltalk, Python, and Perl)?
[Yes = Very good portability, Grade = 1] (100% of final grade)

• If a cross-platform virtual machine or interpreter is not used, how well is the platform-
specific code separated from the cross-platform code?
[Estimate using the very good, good, fair, needs improvement, and poor grades.] (33%
of final grade)

• Use standardized and widely available APIs (e.g., OpenGL, X) and cross-platform
network APIs, protocols, and data representations (e.g., XML, JSON, CORBA, ASN.1,
Unicode). Pay attention to byte-ordering, structure-packing, and native character set
issues.

[Estimate using the very good, good, fair, needs improvement, and poor grades.] (33% of
final grade)

• Use cross-platform libraries and Open Source libraries that have multiplatform support.
[Yes = Very good portability, Grade = 1

No = Poor portability, Grade = 5] (33% of final grade)

6

Programming languages score:
Score assignment for Java™, C, C++, python or Perl is “Very Good”. Use “Fair” for other

high-level languages.

Calculations:

Modularity Calculation:

 Mo = (Mn x .5) + (Ms x .5)

Complexity Calculation:
 Co = (V x .5) + (Cp x .5)

Portability Calculation:

 P = Oa(.3) + Mo(.2) + Pl(.2) + Co(.1)

 P = Portability
Oa = Open Architecture Assessment
Mo = Modularity
Mn = Number of Modules
Ms = Module Size
Cp = Coupling
Pl = Programming Languages

 Co = Complexity
V = Cyclomatic Complexity

Maintainability

As technology, security risks, and hardware requirements increase, software must evolve to
continue to function optimally. The need to maintain the software becomes a critical
expenditure to ensure regular updates and revisions that correct any issues, improve
efficiency and maintain security.

Additionally, the maintainability score is defined by modularity. Software that is modular
can easily be decomposed into smaller, more maintainable parts.

Software maintainability is inversely proportional to both the effort required to make a
change and the risk of breaking other functionality. The key targets in improving software
maintainability are:

• Improve source code readability with comments and self-documented names
• Use a common programming language
• Keep software complexity low
• Use loose coupling and high cohesion
• Isolate software functions using modularization techniques

Related metrics:

• Comment Percentage in Code
• Modularity
• Number of Modules Score
• Module Size Score
• Cyclomatic Complexity

7

• Duplicate/Dead Code
• Number of Instances

Table 3. Maintainability score matrix.

Grade Modules *Size Complexity
(vG)

Duplicate/
Unused
Code

Languages

1 Very good > 20 0–200 > 3 < 10 < 5

2 Good 15–20 201–300 3–6 11–25 5–7

3 Fair 11–15 301–400 7–10 26–40 7–9

4 Needs
improvement 5–10 401–500 11–14 41–50 10-12

5 Poor 1–5 > 500 15–20 > 50 > 12

The Maintainability score indicates how easy or hard it will be to upkeep the software.
This score is determined mostly on software complexity, which is measured by identifying
cyclomatic complexity. Software with higher complexity requires additional effort to upkeep
or modify. This complexity is based on two attributes: (1) more effort is required to
understand complex software and requires additional documentation as well as additional
expertise, and 2) additional effort is required to test because more paths that are independent
require testing. Complex software is typically more prone to inherent defects, and repairing
these defects can increase sustainment costs.
Calculation:

Modularity Calculation:

Mo = (Mn x .5) + (Ms x .5)

Complexity Calculation:

Co = (V x .5) + (Cp x .5)

Maintainability Calculation:

M = Co(.5) + Mo(.3) + Dp(.1) + Pl(.1)
M = Maintainability
Co = Complexity
Cp = Coupling
V = Cyclomatic Complexity
Pl = Programming Languages
Dp = Duplicate/Dead Code

8

Security

Software Security is the measure of open vulnerabilities within the application code. The
Application Security and Development (ASD) Security Technical Implementation Guide
(STIG) provides the baseline requirements for government off-the-shelf (GOTS) applications
and may be used to evaluate custom-developed applications and commercial off-the-shelf
(COTS) software. Software developers can also use a static analysis tool output such as
Common Weakness Enumeration (CWE)/SANS Top 25 vulnerabilities to measure software
security.

The Security Metric formula is based on multi-tier weighting.

We implemented the multi-tier weighting to account for the disparate attributes associated
with the security formula as well as the differing severity vulnerability rating scales provided
by automated tool output. This formula assigns the highest value to Category I (CAT I)
findings, followed by CAT II and CATIII, and other potential issues within the system that
may be elevated to CAT level in the future.

The project team defined the CAT formula to properly weight the associated severity of
each classification of defects and assist in prioritizing vulnerabilities addressed. This formula
does not however represent the application’s overall risk. Risk assessment methodology in
accordance with DoDI 8510.01, Risk Management Framework (RMF) for DoD Information
Technology (IT) and NIST SP 800-30, Guide for Conducting Risk Assessments, and Navy
Guidance, should be used for risk management decisions.

Systems developed for Department of Navy use are typically required to possess zero
CATI findings to field. CATII findings can be present, but only with proper mitigation and a
plan of action to mitigate or remediate those items during a defined time. CATIII findings are
low risk and are allowed; however, every effort should be made to remedy these
accordingly. Based on these criteria, each CAT finding classification is weighted as listed in
the formula with CATI items weighted as (0.5) the total value, CATII weighted at (0.3) the
total value, and CATIII weighted at (0.2) the total CAT value. Once the sum of these values
is calculated, the CAT attribute is weighted for the Overall Security value.

Since Defect Density represents risk for potential issues, it makes up a significant attribute
to define the overall security posture of a software application, it is imperative that it be given
individual weighting and an attribute score in the Overall Security value. For the purpose of
the formula, Defect Density was weighted at (0.25) of the Overall Security value. This
weight is due the increasingly large numbers of software defects that are found throughout
the software we tested. This weight showed that the Defect Density could be considered very
high. However, closer analysis revealed that the vast majority, approximately 80 % of those
defects, are trivial or minor in scope, and focused on coding style issues. These defects are
believed to not impact the ability of the software to be secure and withstand cyber-related
attack. Based on the premise that a large number of defects can be prevalent, it is not
suggested that large numbers indicate proportionately large numbers of critical defects, but
suggests the associated weighting of this attribute at the appropriate 0.25 score.

Related Metrics:

• Open Web Application Security Project (OWASP) Top 10 and CWE

9

Table 4. Security score matrix.

Security Score Matrix Observed Source
Code

Number
of

Defects
per

KLOC

Priority

ASG
STIGMap/CVSSv2
Qualitative Severity

Rating Scale Grade Severity

Scans

Severity
%

1 Very Good None > 1 < 1 None 0

2 Good Low/CATT III 1–2.5 2.5–1 4 Low/
CAT III 0.1–3.9

3 Fair Medium/Low 2.5–4 4–2.5 3 Medium/
CAT III 4.0–6.9

4 Needs
Improvement Medium/CAT II 4–10 10–4 2 High/

CAT I 7.0–8.9

5 Poor Critical/High/CATI > 10 > 10 1 Critical 9.0–10

Calculation:
Security Calculation:
S = (((CATI#s(.5) + CATII#s(.3) + CATIII#s(.2))* .75)
+ ((D / LOC) * .25)

S = Security
LoC = Lines of Code
D =# Defects
CAT I = Any vulnerability, the exploitation of which will directly or immediately result in
the loss of Confidentiality, Availability, or Integrity
CAT II = Any vulnerability, the exploitation of which has potential to result in loss of
Confidentiality, Availability, or Integrity.
CAT III = Any vulnerability, the existence of which degrades measures to protect against
loss of Confidentiality, Availability, or Integrity.

EXTENSIBILITY

Extensibility can be confused with re-usability. Software extensibility describes how much
effort is required to extend and change the software to provide new functionality that may not
have been originally planned. Extensible design avoids software development issues such as
low cohesion and high coupling.

Extensibility measures how easy or hard it will be to add to software’s capability.
Extensibility is impacted by various factors equally. These factors include software
modularity, coupling/cohesion, complexity, and open architecture. Software that is modular

10

can be easily extended because less code requires modification. Therefore, based on these
values we equally weight the attributes for the Extensibility formula.

Related Metrics:

• Modularity
• Number of Modules Score
• Module Size Score
• Weighted Method per Class (WMC)
• Coupling/Cohesion
• Complexity
• Cyclomatic Complexity
• Architecture

Table 5. Extensibility score matrix.

Grade Modules *Size WMC Cohesion on
(LOCM %)

Coupling
(CB0) Architecture

1 Very good > 20 0–200 1–2 > 90 > 2 < 5

2 Good 15–20 201–300 3–6 60–89 2–4 5–7

3 Fair 11–15 301–400 > 14 40–59 4–6 7–9

4 Needs
improvement 5–10 401–500 14–20 25–39 6–8 10–12

5 Poor 1–5 > 500 > 20 > 25 > 8 > 12

Calculations:

Modularity Calculation:

 Mo = (Mn x .5) + (Ms x .5)

Coupling/Cohesion Calculation:

 Cc = (Cp x .5) + (Ch x .5)

Complexity Calculation:

 Co = (V x .5) + (Cp x .5)

Extensibility Calculation:

 E = Mo(.25) + Cc(.25) + Co(.25) + Oa(.25)E = Extensibility
Mo = Modularity
Mn = Number of Modules
Ms = Module Size
Cc = Coupling/Cohesion
Cp = Coupling

11

Ch = Cohesion
Co = Complexity
V = Cyclomatic Complexity
Oa = Open Architecture Assessment

Reliability

Software reliability is the measure of how well the software will work when a particular
functionality is required. Issue density and software complexity are two key drivers
impacting this metric. Software with fewer issues is less likely to break down when it
executed. Software with lower complexity is typically easier to fix and test, requires less
downtown time to fix any issues found, which improves availability and, in turn, increases
reliability.

Our formula weighted the Software Issue Density and Cyclomatic Complexity values
identical. Both contribute equally to the ability of a software application to maintain reliable
operational use. While Cyclomatic Complexity produces the majority of the observed
Software Issue Density due to risks associated with complex software, it also adds significant
time in the repair of the associated defects encountered.

Related Metrics:

• Software Issue Density
• Cyclomatic Complexity

Calculations:
Reliability Calculation:
R = Dd(.5) + V(.5)
 R = Reliability
 Dd = Defect Density
 V = Cyclomatic Complexity

Table 6. Reliability score matrix.

Grade Bug Density in
Modules (%)

Cyclomatic
Complexity

1 Very good > 5 > 3

2 Good 5–10 3–6

3 Fair 10–15 7–10

4 Needs Improvement 15–20 11–14

5 Poor > 20 ≥ 5

12

Testability

We assume that the software artifact contains faults; the Testability metric estimates the
probability that testing will uncover the faults. If the testability of the software artifact is
high, then finding existing faults through testing is easier. Figure 1 shows a simple,
hypothetical model of Testability. If “A” is the range of all the possible inputs and “a” is the
subset of inputs that causes the software to fail, then Testability in percentage equals to a/A *
100.

Figure 1. Testability % = (a/A)*100.

Finding “a” from “A” is impractical, as “A” is usually an infinite set. Software tests
usually focus on the boundary conditions and the code coverage.

Testability is high when a high degree of controllability enables the injection of any input
combination and the invoking of any possible state or combination of state. To uncover
faults, the ability to observe the state and behavior is another desirable characteristic.
Complexity, modularity, and size are also important factors in testability estimation.

Modular software was far easier to test because smaller, less complex modules require less
test paths through the source code to execute complete test coverage. We weighted the
formula based on this fact. For this formula, we weighted Modularity as half (0.5) the
established value of Testability.

A higher score in Testability also relies on a lower Cyclomatic Complexity value (0.4). A
lower Cyclomatic Complexity score depicts less test paths necessary to exercise fully all
branches through the software, which supports full test automation. This score is associated
with the Modularity weighting in that smaller modules, by necessity, would lend it into
having greater numbers, of less complex modules, and would then reduce the complexity
value. An additional note is Dead or Unused Code. This value accounts for a small variable
(0.1) in the formula since higher complex modules exhibit some amount of Dead or Unused
Code in the tested modules or files.

Related Metrics:

• Modularity
• Coupling/Cohesion
• WMC
• Number of modules
• Module size score
• Cyclomatic Complexity
• Reachable Code/Dead Code
• Number of Dead Code instances

13

Calculation:Modularity Calculation:

Mo = (Mn x .5) + (Ms x .5)

Testability Calculation:

T = Mo(.5) + V(.4) + Dp(.1)

 T = Testability
Mo = Modularity
Mn = Number of Modules
Ms = Module Size
 V = Cyclomatic Complexity

 Dp = Duplicate/Dead Code

Scalability

The term “scalability” can encompass a wide range of meanings. For the purposes of this
software quality model, scalability refers to how well the software performs given more users
and data on a system representative of the production environment. The intent is to measure
how the system adapts as the workload increases.

Without instrumenting the code or running performance tests, a quick measure of the
scalability of the system depends on how well the software takes advantage of thread level
and data level parallelism in addition to use of modular design. Software that exhibits more
parallelism may have fewer dependencies and less coupling. Open architectures such as
service oriented architectures (SOA) divide the system into composable parts that can adapt
to varying demands.

Scalability should only be measured dynamically by monitoring resource utilization
growth with increasing load. Depending on the intended platform, analysis tools such as
Intel® VTune™ Amplifier XE, HP® Loadrunner, and Apache JMeter™, can dynamically
assess the software scalability.
Quality to Metrics Dependency Matrix

Table 7 provides the quality characteristics to the dependency matrix..

Table 7. Quality characteristics to metrics dependecy matrix.

Software
Quality

Characteristics

M
od

ul
ar

ity

C
yc

lo
m

at
ic

C

om
pl

ex
ity

D
up

lic
at

e
C

od
e

D
ea

d
C

od
e

Li
ne

s
of

 C
od

e/

C
om

m
en

ts

C
ou

pl
in

g/

C
oh

es
io

n

Ab
st

ra
ct

ne
ss

D
ef

ec
t D

en
si

ty

O
W

A
SP

To

p
Te

n

W
ei

gh
t M

et
ho

d
pe

r
C

la
ss

 (W
M

C

N
um

be
r o

f C
la

ss
es

Si
ze

 o
f C

la
ss

N
um

be
r o

f C
hi

ld
re

n
pe

r C
la

ss

Reliability x x x x x x x x

Portability x x x x

14

Table 7. Quality characteristics to metrics dependecy matrix. (continued)

Software
Quality

Characteristics

M
od

ul
ar

ity

C
yc

lo
m

at
ic

C

om
pl

ex
ity

D
up

lic
at

e
C

od
e

D
ea

d
C

od
e

Li
ne

s
of

 C
od

e/

C
om

m
en

ts

C
ou

pl
in

g/

C
oh

es
io

n

Ab
st

ra
ct

ne
ss

D
ef

ec
t D

en
si

ty

O
W

A
SP

To

p
Te

n

W
ei

gh
t M

et
ho

d
pe

r
C

la
ss

 (W
M

C

N
um

be
r o

f C
la

ss
es

Si
ze

 o
f C

la
ss

N
um

be
r o

f C
hi

ld
re

n
pe

r C
la

ss

Maintainability x x x x x x x

Security x

Extensibility x x x x x x x

Reliability x x

Testability x x x x x x

Scalability

SOFTWARE METRICS DEFINITION

MODULARITY

Modularity separates a software system in independent and collaborative modules for
organization in software architecture [1]. Modular software has several advantages such as
maintainability, manageability, and comprehensibility.

Five attributes are closely related to modularity in software systems: size, coupling/
dependency, complexity, cohesion, and information hiding. The first attribute is the size of
the module as well as the system that contains each module. It should not be too large.
Additional system features should be translated as the addition in the module of the system.
The second attribute is coupling/dependency, which consists of a direct/syntactic achieved
through composition, method signatures, class instantiations, inheritance, and semantic or
indirect coupling. Developers can measure the third attribute, complexity, by using software
metrics such as McCabe's Cyclomatic Complexity or Halstead's Software Metrics. The fourth
attribute is cohesion, which measures the integrity of the code inside each of module. The
terms used to measure cohesion qualitatively are high cohesion or low cohesion. The last
attribute is information hiding, which involves hiding the details of implementation from
external modules. An ideal modular software system should have the following attributes [2]:

• Small Size: Each module (package) and many modules in the system should be
small. Each module/package should only be responsible for a simple feature, and
the more complex features should be composed of many of these simple features.
The possible software metrics to measure size are Non-Comment Lines of Code
(NCLOC), Lines, or Statements.

15

• Low Coupling/Dependency: Minimization or standardization of coupling/
dependency occurs through standard format, that is, published application
programming interfaces (APIs), elimination of semantic dependencies, etc. The
possible software metrics to measure coupling are Afferent Coupling, Efferent
Coupling, or RFC (Response for a Class).

• Low complexity: A hierarchy of modules prefers flatter rather than taller
dependency. The most popular software metrics to measure complexity is
Cyclomatic Complexity. [3]

• High Cohesion: High integrity of the internal structure of software modules are
usually stated as either high cohesion or low cohesion. The better measure of
cohesion in object-oriented programming such as Java™ is LCOM4 or Lack of
Cohesion Metrics version 4, proposed by Hitz and Montazeri.

• Open for Extension and Close to Modification: Capability of the existing
module is extended to create a more complex module to avoid changing already
debugged code. The creation of new modules should be encouraged using available
extension and not modifying the already tested module. [2]

DEPENDENCIES

Almost all software systems have components that are identifiable as data items, data
types, subprograms, or source files. A dependency exists between two components if a
change to one may have an impact that will require changes to the other.
CYCLOMATIC COMPLEXITY

The cyclomatic complexity of a section of source code is the number of linearly
independent paths within it. For instance, if the source code contains no control flow
statements (conditionals or decision points), such as IF statements, the complexity is 1, since
there is only a single path through the code. If the code has one single-condition IF statement,
there are two paths through the code: one where the IF statement evaluates to TRUE and
another one where it evaluates to FALSE, so complexity is 2 for single IF statement with
single condition. Two nested single-condition IFs, or one IF with two conditions, produces a
complexity of 4, 2 for each branch within the outer conditional. Thomas J. McCabe, Sr.,
developed cyclomatic complexity in 1976. [3]

One of McCabe's original applications was to limit the complexity of routines during
program development; he recommended that developers should count the complexity of the
modules they are developing, and split them into smaller modules whenever the cyclomatic
complexity of the module exceeds 10. This practice was adopted by the National Institute of
Standards and Technologies (NIST) Structured Testing methodology, with an observation
that since McCabe's original publication, the figure of 10 has received substantial
corroborating evidence, but that in some circumstances it may be appropriate to relax the
restriction and permit modules with a complexity as high as 15. As the methodology
acknowledged occasional reasons for going beyond the agreed-upon limit, it phrased its
recommendation as follows: "For each module, either limit cyclomatic complexity to [the
agreed-upon limit] or provide a written explanation of why the limit was exceeded." [4]

16

ABSTRACTNESS

Robert Martin proposed a widely used metric suite in 1994. Abstractness was included and
is the ratio of the number of abstract classes versus the total number of classes. A value of 0
would mean no abstract classes were present and a maximum value of 1 would mean that all
of the classes are abstract. [5]

Abstractness is important to maintain stability within the source code [6]. Abstractions
allow the implementation to change without modifying the interfaces, so that dependent code
does not break. Abstractions also may indicate the use of design patterns.
COUPLING

This metric shows how the source code depends on the strength with which classes,
methods, and methods’ parameters are connected to each other, and the degree to which each
program module relies on each one of the others.

Low (loose) coupling means that source code is organized so that its methods and classes
slightly address each other. Software developers do not write the source code optimally, but
rather create independent methods and classes to solve separate tasks.
COHESION

This metric shows an average number of internal relationships per type in a
package/namespace.
AFFERENT COUPLING

Afferent means incoming. Software developers apply this metric to packages and
namespaces. It is the number of types outside a package or namespace that depend on types
of the current package or namespace. High afferent coupling shows that the analyzed
package/namespace is very important.
EFFERENT COUPLING

Efferent means outgoing. This metric is the number of types inside a package/namespace
that depend on types of other types/packages. High efferent coupling shows the degree to
which the measured package/namespace depends on external packages/namespaces.

The main idea of this metric is that the class has high cohesion when all its methods use all
the fields of this class.
DUPLICATE CODE

Code that is similar or copy and pasted can be harmful because it can increase maintenance
costs and inconsistent changes to duplicate code can lead to inconsistent behavior. The
presence of similar code also indicates the presence of a missed opportunity for reuse. [7]
DEAD CODE

Dead code is code that is never used. This code includes unused methods and variables.
Dead code can lead to difficulties in understanding the program, which can lead to bugs or an
increase in maintenance costs. [8]
DEFECT DENSITY OR SOFTWARE ISSUE DENSITY

Defect Density is the number of confirmed defects detected in a software/component
during a defined period of development/operation divided by the size of the
software/component. [9]

17

Elaboration:

The “defects” are:

• Confirmed and agreed upon (not just reported)
• Dropped defects are not counted

The period might be for one of the following:

• Duration (the first month, the quarter, or the year).
• For each phase of the software life cycle
• For the whole of the software life cycle

The size is measured in one of the following:

• Function Points (FP)
• Source Lines of Code

WEIGHTED METHODS PER CLASS (WMC)

This metric provides a better measurement of class complexity. It is the sum of the
complexities of all the class methods. A class having a high WMC is more complex and is
harder to maintain, reuse, or extend. Complexity is not explicitly defined for the metric to be
generic. In the special case when complexity is not considered, the WMC metric is the same
as the number of methods in the class.
NUMBER OF CHILDREN PER CLASS (NOC)

In object oriented (OO) terminology, classes that inherit their functionality from other
classes are called Children Classes. A high value for NOC indicates that the class is
implemented in abstract manner since other classes can inherit from it and reuse it.

STATIC-CODE ANALYSIS TOOLS
Both industry and open-source developers have provided a wide array of useful static-code

analysis tools.
ATOMIQ [10]

Summary: Atomiq is a free tool that finds duplicate and similar code.

Languages: C/C++, C#, VB.net®, ASPX, RUBY, Python™, Java™, ActionScript®, XAML
Metrics Supported: Duplicate Code

CHECKSTYLE [11]

Summary: Checkstyle is an open-source tool to help developers write Java™ code that
adheres to a coding standard. There is a plug-in for Eclipse™, IntelliJ™ IDEA, Netbeans™,
Jenkins, and others that notify developers on-the-fly of any violations.

Languages: Java™

Metrics Supported: Cyclomatic Complexity, Design For Extension, Presence of Javadoc
Comments (packages, types, methods, variables), Magic Numbers, File Length, Method
Length, Method Count

18

COUNT LINES OF CODE (CLOC) [12]

Summary: CLOC counts blank lines, comment lines, and physical lines of source code in
many programming languages. Given two versions of a code base, CLOC can compute
differences in blank, comment, and source lines. It is written entirely in Perl with no
dependencies outside the standard distribution of Perl v5.6 and higher (code from some
external modules is embedded within CLOC) and so is quite portable.

Languages:

Metrics Supported: Lines of Code, Lines of Comments, Lines of Blank Lines
CPPDEPEND [13]

Summary: CppDepend simplifies managing a complex C/C++ code base. You can analyze
code structure, specify design rules, do effective code reviews, and master evolution by
comparing different versions of the code. CppDepend counts the number of lines of code.
It also comes with more than 80 other code metrics. Some of them are related to your code
organization (the number of classes or namespaces, the number of methods declared in a
class, etc.), some of them are related to code quality (complexity, percentage of
comments, number of parameters, cohesion of classes, stability of projects, etc.), some of
them are related to the structure of code (which types are the most used, depth of
inheritance, etc.)

Languages: C++

Metrics Supported: Similar to NDepend
FINDBUGS™ [14]

Summary: Open-source tool written by the University of Maryland to find bugs in Java™
programs. A graphical user interface (GUI) is provided in addition to access by antenna.

Languages: Java™

Metrics Supported: Identifies code that follow common bug patterns for Java™, such as
possible null pointer dereference or index out of bounds.

FIND SECURITY BUGS [15]

Summary: Open-source plugin for FindBugs™, providing security audits for Java™ Web
applications.

Languages: Java™

Metrics Supported: It can detect 63 different vulnerability types with over 200 unique
signatures with extensive references given for each bug patterns with references to
OWASP Top 10 and CWE.

FORTIFY™ [16]

Summary: Fortify™ by Hewlett Packard® provides a comprehensive tool for detecting
security vulnerabilities.

Languages: 21 languages

Metrics Supported: 500 types of vulnerability detection, including OWASP Top 10

19

GMETRICS [17]

Summary: The GMetrics project provides calculation and reporting of size and complexity
metrics for Groovy source code. GMetrics scans Groovy source code, applying a set of
metrics, and generating an HTML or XML report of the results.

Languages: Groovy

Metrics Supported: Cyclomatic Complexity, Afferent Coupling, Efferent Coupling, Lines
per Method, Lines per Class, Number of Classes per Package, Number of Fields per Class

JARCHITECT [18]

Summary: JArchitect offers a wide range of features. It is often described as a Swiss
Army Knife for Java™ developers. JArchitect comes with more than 80 other code
metrics. Some of them are related to your code organization (the number of classes or
Packages, the number of methods declared in a class, etc.), some of them are related to
code quality (complexity, percentage of comments, number of parameters, cohesion of
classes, stability of projects, etc.), and some of them are related to the structure of code
(which types are the most used, depth of inheritance, etc.).

Languages: Java™

Metrics Supported: Similar to NDepend
MCCABE IQ [19]

Summary: McCabe IQ provides software analysis tools to measure the complexity and
quality of code at the application and enterprise level.

Languages: Ada, ASM86, C/C++, C#, C++.net, COBOL, FORTRAN, Java™, JSP, Perl,
PL1, VB, VB.net®

Metrics Supported: Cyclomatic Complexity (< 10), Module Design Complexity (< 7),
Essential Complexity (< 4), Lack of Cohesion Methods (> 75), Object Integration
Complexity, Maintenance Severity

NDEPEND [20]

Summary: NDepend offers a wide range of features to let the user analyze a code base. It
is often described as a Swiss Army Knife for .netT developers.

Languages: .NET

Metrics Supported: Lines of Code, Lines of Comments, Afferent Coupling, Efferent
Coupling, Abstractness, Instability, Lack of Cohesion of Methods, Cyclomatic
Complexity (< 10)

PMD® [21]

Summary: PMD® is an open-source tool used to find defects, including possible bugs,
dead code, suboptimal code, overcomplicated expressions, and duplicate code.

Languages: PMD® supports rulesets for Java™, Javascript™, JSP, PL/SQL™, Velocity
Template Language, and XML/XSL. The PMD® Copy and Paste Detector can run with
additional languages, including C++, C#, FORTR, Go, MATLAB®, etc.

Metrics Supported: Varies by language. For most languages, copy paste detection is
provided. For Java™, additional metrics include: Source lines of code, Cyclomatic

20

Complexity (<10), Coupling Between Objects, Loose Coupling, Exception Handling,
Unused Code (Dead Code)

SONARQUBE™ [22]

Summary: SonarQube™ is an open-source platform for managing code quality. The tool
supports 20+ languages through plug-ins and can collect a variety of metrics in addition to
allowing the creation of custom metric rules. It also supports a variety of plug-ins for
other code analysis tools such as Checkstyle and PMD® that can extend the number of
metrics it can collect.

Languages: Java™, C#, C/C++, PL/SQL™, Cobol, Advanced Business Application
Planning (ABAP®) (20+ languages supported through plug-ins)

Metrics Supported: Duplicate Code, Failed Unit Tests, Insufficient Branch Coverage by
Unit Tests, Insufficient Comment Density, Insufficient Line Coverage by Unit Tests, and
Skipped Unit Tests

UNIFIED CODE COUNT (UCC) [23]

Summary: UCC is a comprehensive source lines of code counter produced by the USC
Center for Systems and Software Engineering. It is an open-source tool that can be
compiled with any ANSI standard C++ compiler.

Languages: C/C++, C#, Java™, VB, Assembly, and others

Metrics Supported: Source Lines of Code, Physical Source Lines of Code (PSLOC),
Logical Source Lines of Code (LSLOC)

UNDERSTAND™ [24]

Summary: Understand™ is a robust static code analysis tool developed by Scientific
Toolworks, Inc. supporting the generation of multiple kinds of reports and views of the
data at different levels (project, class, object oriented metrics, program unit, file).
Understand can perform dependency analysis in addition to code standards testing.

Languages: Ada, COBOL, Coldfire® 68K Assembly, C/C++, C#, FORTRAN,
Java™, Jovial, Pascal, PL/M, Python™, VHDL, Javascript™, PHP, XML, HTML,
CSS Metrics Supported: Understand can check for adherence to published coding standards
from Effective C++ (3rd Edition) by Scott Meyers, MISRA-C 2004, MISRA-C++ 2008,
and any custom coding standards defined by the user. Understand also supports checks for
Dead Code, Cyclomatic Complexity, Source Lines of Code, Coupling Between Objects,
Lack of Cohesion in Methods, and Comment to Code Ratio.

TOOLS TO METRIX MATRIX

The tools applied to the dependency matrix are provided in Table 8.

21

Table 8. Tools to metrics matrix.

Tools

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

D
up

lic
at

e
C

od
e

D
ea

d
C

od
e

Li
ne

s
of

 C
od

e/

C
om

m
en

ts

C
ou

pl
in

g/

C
oh

es
io

n

A
bs

tra
ct

ne
ss

D
ef

ec
t D

en
si

ty

O
W

A
S

P

To
p

Te
n

N
um

be
r o

f C
la

ss
es

S
iz

e
of

 C
la

ss

N
um

be
r o

f C
hi

ld
re

n
pe

r C
la

ss

Atomiq x x

Checkstyle x

CLOC X

CppDepend x x x x x x

FindBugs™ x

Find Security
Bugs x x

Fortify™ x x

GMetrics x x x x X

JArchitect x x x x x X

McCabe IQ x

NDepend x x x x x X

PMD® x x x X

SonarCube™ (no
plug-ins) x X

UCC x

Understand™ x x x x x x

22

CONCLUSION

We have identified software qualities, software analysis tools, and related metrics. This
effort was based on existing data and analysis of that data, proofing a formula for use by
Department of the Navy software development efforts to measure inherent quality of the
software under development. However, each project is unique and requires a software quality
model tailored for its individual needs.

This process is an ongoing effort for any organization and requires analysis of data and
trends to determine the most effective implementation of metrics to achieve the highest
fidelity of quality and provide for beneficial cost savings. In addition, evaluators need to
create and calibrate cost functions for the cost of fixing the code that does not meet software
code requirements. This activity will normalize the software model based on cost.

23

REFERNCES

1. E. Y. Nakagawa. 2008. “Software Architecture Relevance in Open Source Software
Evolution: A Case Study.” 32nd Annual IEEE International Computer Software and
Application Conference (COMSAC) (pp. 1234‒1239). July 2‒August 1, Tunku,
Finland.

2. W. R. Emanuel, R. Wardoyo, J. E. Istiyanto, and K. Mustofa. 2011. “Statistical
Analysis on Software Metrics Affecting Modularity in Open Source Sofware,”
International Journal of Computer Science & Information Technology (IJCSIT), vol.
3, pp. 105‒118.

3. T. J. McCabe, 1976. "A Complexity Measure," IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 143‒150.

4. A, H. Watson and T. J. McCabe. 1996. “Structured Testing: A Testing Methodology
Using the Cyclomatic Complexity Metric.” NIST Special Publication 500‒235.
McCabe Software.

5. Y. Suresh, J. Pati, and S. K. Rath. 2012. “Effectiveness of Software Metrics for
Object-oriented System,” Procedia Technology, vol. 6, pp. 420‒427.

6. R. Martin. 1994. “Object Mentor.” Available at http://www.objectmentor.com/
resources/articles/oodmetrc.pdf. [Accessed Aug. 15, 2015].

7. E. Juergens, F. Deissenboeck, and B. Hummel, 2010. “Code Similarities Beyond
Copy & Paste,” Proceedings of the 14th European Conference on Software
Maintenance and Reengineering (pp. 78‒87). March 15‒18, Madrid, Spain.

8. Sonar Qube. “Detect Dead Code and Calls to Deprecated Methods with Sonar
Squid,” [Online]. Available: http://www.sonarqube.org/detect-dead-code-and-calls-
to-deprecated-methods-with-sonar-squid/ [Accessed August 14, 2015].

9. Software Testing Fundamentals. “Defect Density.” [Online]. Available:
http://softwaretestingfundamentals.com/defect-density.

10. "Atomiq Code Similarity Finder," [Online]. Available: http://www.getatomiq.com/ .
[Accessed July 31, 2015].

11. "Checkstyle Checks," [Online]. Available:
http://checkstyle.sourceforge.net/checks.html. [Accessed July 31, 2015].

12. Github, Inc. “CLOC: Count Lines of Code.” Available:
https://github.com/AlDanial/cloc. [Accessed October 9, 2015].

13. Codergears, "CppDepend," Codergears, [Online]. Available: http://cppdepend.com.
[Accessed August 14, 2015].

14. "FindBugs Bug Descriptions," [Online]. Available:
http://findbugs.sourceforge.net/bugDescriptions.html. [Accessed 31 July 2015].

15. P. Arteau, Open-source, open for contributions, [Online]. Available:
http://h3xstream.github.io/find-sec-bugs.

http://www.objectmentor.com/resources/articles/oodmetrc.pdf
http://www.objectmentor.com/resources/articles/oodmetrc.pdf
http://www.sonarqube.org/detect-dead-code-and-calls-to-deprecated-methods-with-sonar-squid/
http://www.sonarqube.org/detect-dead-code-and-calls-to-deprecated-methods-with-sonar-squid/
http://softwaretestingfundamentals.com/defect-density
http://www.getatomiq.com/
http://checkstyle.sourceforge.net/checks.html
https://github.com/AlDanial/cloc
http://cppdepend.com/
http://h3xstream.github.io/find-sec-bugs

24

16. Hewlett Packard. “Securing Your Enterprise Software.” Available:
http://www8.hp.com/us/en/software-solutions/asset/software-asset-
viewer.html?asset=1356157&module=1823975&docname=4aa4-
2455enw&page=1823980. [Accessed August 29, 2015].

17. Gmetrics. Apache License V2.0, [Online]. Available:
http://gmetrics.sourceforge.net/index.html

18. Codergears. “JArchitect.” [Online]. Available: http://www.jarchitect.com.
[Accessed Oct. 9, 2015].

19. McCabe Software. “McCabe Software Metrics Glossary.” [Online]. Available:
http://www.mccabe.com/iq_research_metrics.htm [Accessed July 31, 2015].

20. Codergears. “ndepend.” [Online]. Available: http://www.ndepend.com

21. SourceForge.net. “PMD Rulesets Index: Current Rulesets,” [Online]. Available:
https://pmd.github.io/pmd-5.3.3/pmd-java/rules/index.html.
[Accessed July 31, 2015].

22. SonarSource S.A. “SonarQube Manual Issues.” [Online]. Available:
http://docs.sonarqube.org/display/SONAR/Manual+Issues
[Accessed August 3, 2015].

23. USC Center for Systems and Software Engineering. “About UCC.” [Online].
Available: http://csse.usc.edu/ucc_wp/about/. [Accessed July 31, 2015].

24. Scientific Toolworks, Inc. “Understand Features.” [Online]. Available:
https://scitools.com/features. [Accessed August 3, 2015]

http://www8.hp.com/us/en/software-solutions/asset/software-asset-viewer.html?asset=1356157&module=1823975&docname=4AA4-2455ENW&page=1823980
http://www8.hp.com/us/en/software-solutions/asset/software-asset-viewer.html?asset=1356157&module=1823975&docname=4AA4-2455ENW&page=1823980
http://www8.hp.com/us/en/software-solutions/asset/software-asset-viewer.html?asset=1356157&module=1823975&docname=4AA4-2455ENW&page=1823980
http://gmetrics.sourceforge.net/index.html
http://www.jarchitect.com/
http://www.mccabe.com/iq_research_metrics.htm
http://www.ndepend.com/
https://pmd.github.io/pmd-5.3.3/pmd-java/rules/index.html
http://docs.sonarqube.org/display/SONAR/Manual+Issues
http://csse.usc.edu/ucc_wp/about/
https://scitools.com/features

INITIAL DISTRIBUTION
84300 Library (2)
85300 Archive/Stock (1)
53203 C. Johnson (1)

Defense Technical Information Center
Fort Belvoir, VA 22060–6218 (1)

Approved for public release.

SSC Pacific

San Diego, CA 92152-5001

	Purpose
	Software Quality Characteristics
	Software Quality Measurment
	Reusability
	Portability
	Related Metrics
	Maintainability
	Security

	Extensibility
	Reliability
	Testability
	Scalability
	Quality to Metrics Dependency Matrix

	software metrics definition
	Modularity
	Dependencies
	Cyclomatic Complexity
	Abstractness
	Coupling
	Cohesion
	Afferent Coupling
	Efferent Coupling
	Duplicate Code
	Dead Code
	Defect Density or Software Issue Density
	Weighted Methods per Class (WMC)
	Number of Children per class (NOC)

	Static-Code Analysis Tools
	Atomiq [10]
	Checkstyle [11]
	Count Lines of code (CLOC) [12]
	CppDepend [13]
	FINDBUGS™ [14]
	Find Security Bugs [15]
	FORTIFY™ [16]
	GMetrics [17]
	JArchitect [18]
	McCabe® IQ [19]
	NDepend [20]
	PMD® [21]
	SonarQube™ [22]
	Unified Code Count (UCC) [23]
	UNDERSTAND™ [24]
	tools to metrix matrix

	Conclusion

